Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Percolation Computation in Complex Networks (1205.0038v1)

Published 30 Apr 2012 in cs.SI and physics.soc-ph

Abstract: K-clique percolation is an overlapping community finding algorithm which extracts particular structures, comprised of overlapping cliques, from complex networks. While it is conceptually straightforward, and can be elegantly expressed using clique graphs, certain aspects of k-clique percolation are computationally challenging in practice. In this paper we investigate aspects of empirical social networks, such as the large numbers of overlapping maximal cliques contained within them, that make clique percolation, and clique graph representations, computationally expensive. We motivate a simple algorithm to conduct clique percolation, and investigate its performance compared to current best-in-class algorithms. We present improvements to this algorithm, which allow us to perform k-clique percolation on much larger empirical datasets. Our approaches perform much better than existing algorithms on networks exhibiting pervasively overlapping community structure, especially for higher values of k. However, clique percolation remains a hard computational problem; current algorithms still scale worse than some other overlapping community finding algorithms.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.