Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Role of Vertex Consistency in Sampling-based Algorithms for Optimal Motion Planning (1204.6453v1)

Published 29 Apr 2012 in cs.RO

Abstract: Motion planning problems have been studied by both the robotics and the controls research communities for a long time, and many algorithms have been developed for their solution. Among them, incremental sampling-based motion planning algorithms, such as the Rapidly-exploring Random Trees (RRTs), and the Probabilistic Road Maps (PRMs) have become very popular recently, owing to their implementation simplicity and their advantages in handling high-dimensional problems. Although these algorithms work very well in practice, the quality of the computed solution is often not good, i.e., the solution can be far from the optimal one. A recent variation of RRT, namely the RRT* algorithm, bypasses this drawback of the traditional RRT algorithm, by ensuring asymptotic optimality as the number of samples tends to infinity. Nonetheless, the convergence rate to the optimal solution may still be slow. This paper presents a new incremental sampling-based motion planning algorithm based on Rapidly-exploring Random Graphs (RRG), denoted RRT# (RRT "sharp") which also guarantees asymptotic optimality but, in addition, it also ensures that the constructed spanning tree of the geometric graph is consistent after each iteration. In consistent trees, the vertices which have the potential to be part of the optimal solution have the minimum cost-come-value. This implies that the best possible solution is readily computed if there are some vertices in the current graph that are already in the goal region. Numerical results compare with the RRT* algorithm.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.