Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Relativizing Small Complexity Classes and their Theories (1204.5508v1)

Published 24 Apr 2012 in cs.CC

Abstract: Existing definitions of the relativizations of \NCOne, \L\ and \NL\ do not preserve the inclusions $\NCOne \subseteq \L$, $\NL\subseteq \ACOne$. We start by giving the first definitions that preserve them. Here for \L\ and \NL\ we define their relativizations using Wilson's stack oracle model, but limit the height of the stack to a constant (instead of $\log(n)$). We show that the collapse of any two classes in ${\ACZm, \TCZ, \NCOne, \L, \NL}$ implies the collapse of their relativizations. Next we exhibit an oracle $\alpha$ that makes $\ACk(\alpha)$ a proper hierarchy. This strengthens and clarifies the separations of the relativized theories in [Takeuti, 1995]. The idea is that a circuit whose nested depth of oracle gates is bounded by $k$ cannot compute correctly the $(k+1)$ compositions of every oracle function. Finally we develop theories that characterize the relativizations of subclasses of \Ptime\ by modifying theories previously defined by the second two authors. A function is provably total in a theory iff it is in the corresponding relativized class, and hence the oracle separations imply separations for the relativized theories.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.