0/1 Polytopes with Quadratic Chvatal Rank (1204.4753v1)
Abstract: For a polytope P, the Chvatal closure P' is obtained by simultaneously strengthening all feasible inequalities cx <= b (with integral c) to cx <= floor(b). The number of iterations of this procedure that are needed until the integral hull of P is reached is called the Chvatal rank. If P is a subset of [0,1]n, then it is known that O(n2 log n) iterations always suffice (Eisenbrand and Schulz (1999)) and at least (1+1/e-o(1))n iterations are sometimes needed (Pokutta and Stauffer (2011)), leaving a huge gap between lower and upper bounds. We prove that there is a polytope contained in the 0/1 cube that has Chvatal rank Omega(n2), closing the gap up to a logarithmic factor. In fact, even a superlinear lower bound was mentioned as an open problem by several authors. Our choice of P is the convex hull of a semi-random Knapsack polytope and a single fractional vertex. The main technical ingredient is linking the Chvatal rank to simultaneous Diophantine approximations w.r.t. the L1-norm of the normal vector defining P.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.