Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

New bounds on the classical and quantum communication complexity of some graph properties (1204.4596v1)

Published 20 Apr 2012 in quant-ph and cs.CC

Abstract: We study the communication complexity of a number of graph properties where the edges of the graph $G$ are distributed between Alice and Bob (i.e., each receives some of the edges as input). Our main results are: * An Omega(n) lower bound on the quantum communication complexity of deciding whether an n-vertex graph G is connected, nearly matching the trivial classical upper bound of O(n log n) bits of communication. * A deterministic upper bound of O(n{3/2}log n) bits for deciding if a bipartite graph contains a perfect matching, and a quantum lower bound of Omega(n) for this problem. * A Theta(n2) bound for the randomized communication complexity of deciding if a graph has an Eulerian tour, and a Theta(n{3/2}) bound for the quantum communication complexity of this problem. The first two quantum lower bounds are obtained by exhibiting a reduction from the n-bit Inner Product problem to these graph problems, which solves an open question of Babai, Frankl and Simon. The third quantum lower bound comes from recent results about the quantum communication complexity of composed functions. We also obtain essentially tight bounds for the quantum communication complexity of a few other problems, such as deciding if G is triangle-free, or if G is bipartite, as well as computing the determinant of a distributed matrix.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.