Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

(Non-)existence of Polynomial Kernels for the Test Cover Problem (1204.4368v1)

Published 19 Apr 2012 in cs.CC and cs.DS

Abstract: The input of the Test Cover problem consists of a set $V$ of vertices, and a collection ${\cal E}={E_1,..., E_m}$ of distinct subsets of $V$, called tests. A test $E_q$ separates a pair $v_i,v_j$ of vertices if $|{v_i,v_j}\cap E_q|=1.$ A subcollection ${\cal T}\subseteq {\cal E}$ is a test cover if each pair $v_i,v_j$ of distinct vertices is separated by a test in ${\cal T}$. The objective is to find a test cover of minimum cardinality, if one exists. This problem is NP-hard. We consider two parameterizations the Test Cover problem with parameter $k$: (a) decide whether there is a test cover with at most $k$ tests, (b) decide whether there is a test cover with at most $|V|-k$ tests. Both parameterizations are known to be fixed-parameter tractable. We prove that none have a polynomial size kernel unless $NP\subseteq coNP/poly$. Our proofs use the cross-composition method recently introduced by Bodlaender et al. (2011) and parametric duality introduced by Chen et al. (2005). The result for the parameterization (a) was an open problem (private communications with Henning Fernau and Jiong Guo, Jan.-Feb. 2012). We also show that the parameterization (a) admits a polynomial size kernel if the size of each test is upper-bounded by a constant.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.