Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Beyond Random Walk and Metropolis-Hastings Samplers: Why You Should Not Backtrack for Unbiased Graph Sampling (1204.4140v1)

Published 18 Apr 2012 in stat.ME, cs.DS, cs.NI, cs.SI, physics.data-an, and physics.soc-ph

Abstract: Graph sampling via crawling has been actively considered as a generic and important tool for collecting uniform node samples so as to consistently estimate and uncover various characteristics of complex networks. The so-called simple random walk with re-weighting (SRW-rw) and Metropolis-Hastings (MH) algorithm have been popular in the literature for such unbiased graph sampling. However, an unavoidable downside of their core random walks -- slow diffusion over the space, can cause poor estimation accuracy. In this paper, we propose non-backtracking random walk with re-weighting (NBRW-rw) and MH algorithm with delayed acceptance (MHDA) which are theoretically guaranteed to achieve, at almost no additional cost, not only unbiased graph sampling but also higher efficiency (smaller asymptotic variance of the resulting unbiased estimators) than the SRW-rw and the MH algorithm, respectively. In particular, a remarkable feature of the MHDA is its applicability for any non-uniform node sampling like the MH algorithm, but ensuring better sampling efficiency than the MH algorithm. We also provide simulation results to confirm our theoretical findings.

Citations (154)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.