Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Realizable Rate Distortion Function and Bayesian FIltering Theory (1204.2980v1)

Published 13 Apr 2012 in cs.IT, math.FA, math.IT, and math.PR

Abstract: The relation between rate distortion function (RDF) and Bayesian filtering theory is discussed. The relation is established by imposing a causal or realizability constraint on the reconstruction conditional distribution of the RDF, leading to the definition of a causal RDF. Existence of the optimal reconstruction distribution of the causal RDF is shown using the topology of weak convergence of probability measures. The optimal non-stationary causal reproduction conditional distribution of the causal RDF is derived in closed form; it is given by a set of recursive equations which are computed backward in time. The realization of causal RDF is described via the source-channel matching approach, while an example is briefly discussed to illustrate the concepts.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube