Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Automatic facial feature extraction and expression recognition based on neural network (1204.2073v1)

Published 10 Apr 2012 in cs.CV

Abstract: In this paper, an approach to the problem of automatic facial feature extraction from a still frontal posed image and classification and recognition of facial expression and hence emotion and mood of a person is presented. Feed forward back propagation neural network is used as a classifier for classifying the expressions of supplied face into seven basic categories like surprise, neutral, sad, disgust, fear, happy and angry. For face portion segmentation and localization, morphological image processing operations are used. Permanent facial features like eyebrows, eyes, mouth and nose are extracted using SUSAN edge detection operator, facial geometry, edge projection analysis. Experiments are carried out on JAFFE facial expression database and gives better performance in terms of 100% accuracy for training set and 95.26% accuracy for test set.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.