Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Hiding Sensitive Association Rules without Altering the Support of Sensitive Item(s) (1204.1710v1)

Published 8 Apr 2012 in cs.DB and cs.DC

Abstract: Association rule mining is an important data-mining technique that finds interesting association among a large set of data items. Since it may disclose patterns and various kinds of sensitive knowledge that are difficult to find otherwise, it may pose a threat to the privacy of discovered confidential information. Such information is to be protected against unauthorized access. Many strategies had been proposed to hide the information. Some use distributed databases over several sites, data perturbation, clustering, and data distortion techniques. Hiding sensitive rules problem, and still not sufficiently investigated, is the requirement to balance the confidentiality of the disclosed data with the legitimate needs of the user. The proposed approach uses the data distortion technique where the position of the sensitive items is altered but its support is never changed. The size of the database remains the same. It uses the idea of representative rules to prune the rules first and then hides the sensitive rules. Advantage of this approach is that it hides maximum number of rules however, the existing approaches fail to hide all the desired rules, which are supposed to be hidden in minimum number of passes. The paper also compares of the proposed approach with existing ones.

Citations (47)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)