Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hiding Sensitive Association Rules without Altering the Support of Sensitive Item(s) (1204.1710v1)

Published 8 Apr 2012 in cs.DB and cs.DC

Abstract: Association rule mining is an important data-mining technique that finds interesting association among a large set of data items. Since it may disclose patterns and various kinds of sensitive knowledge that are difficult to find otherwise, it may pose a threat to the privacy of discovered confidential information. Such information is to be protected against unauthorized access. Many strategies had been proposed to hide the information. Some use distributed databases over several sites, data perturbation, clustering, and data distortion techniques. Hiding sensitive rules problem, and still not sufficiently investigated, is the requirement to balance the confidentiality of the disclosed data with the legitimate needs of the user. The proposed approach uses the data distortion technique where the position of the sensitive items is altered but its support is never changed. The size of the database remains the same. It uses the idea of representative rules to prune the rules first and then hides the sensitive rules. Advantage of this approach is that it hides maximum number of rules however, the existing approaches fail to hide all the desired rules, which are supposed to be hidden in minimum number of passes. The paper also compares of the proposed approach with existing ones.

Citations (47)

Summary

We haven't generated a summary for this paper yet.