Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Clustering and Bayesian network for image of faces classification (1204.1679v1)

Published 7 Apr 2012 in cs.CV and cs.AI

Abstract: In a content based image classification system, target images are sorted by feature similarities with respect to the query (CBIR). In this paper, we propose to use new approach combining distance tangent, k-means algorithm and Bayesian network for image classification. First, we use the technique of tangent distance to calculate several tangent spaces representing the same image. The objective is to reduce the error in the classification phase. Second, we cut the image in a whole of blocks. For each block, we compute a vector of descriptors. Then, we use K-means to cluster the low-level features including color and texture information to build a vector of labels for each image. Finally, we apply five variants of Bayesian networks classifiers (Na\"ive Bayes, Global Tree Augmented Na\"ive Bayes (GTAN), Global Forest Augmented Na\"ive Bayes (GFAN), Tree Augmented Na\"ive Bayes for each class (TAN), and Forest Augmented Na\"ive Bayes for each class (FAN) to classify the image of faces using the vector of labels. In order to validate the feasibility and effectively, we compare the results of GFAN to FAN and to the others classifiers (NB, GTAN, TAN). The results demonstrate FAN outperforms than GFAN, NB, GTAN and TAN in the overall classification accuracy.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.