Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Fast Computation of Gradients for CANDECOMP/PARAFAC Algorithms (1204.1586v1)

Published 7 Apr 2012 in cs.NA and math.NA

Abstract: Product between mode-$n$ unfolding $\bY_{(n)}$ of an $N$-D tensor $\tY$ and Khatri-Rao products of $(N-1)$ factor matrices $\bA{(m)}$, $m = 1,..., n-1, n+1, ..., N$ exists in algorithms for CANDECOMP/PARAFAC (CP). If $\tY$ is an error tensor of a tensor approximation, this product is the gradient of a cost function with respect to factors, and has the largest workload in most CP algorithms. In this paper, a fast method to compute this product is proposed. Experimental verification shows that the fast CP gradient can accelerate the CP_ALS algorithm 2 times and 8 times faster for factorizations of 3-D and 4-D tensors, and the speed-up ratios can be 20-30 times for higher dimensional tensors.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.