Papers
Topics
Authors
Recent
2000 character limit reached

Kernel Methods for the Approximation of Some Key Quantities of Nonlinear Systems (1204.0563v2)

Published 3 Apr 2012 in math.OC, math.DS, and stat.ML

Abstract: We introduce a data-based approach to estimating key quantities which arise in the study of nonlinear control systems and random nonlinear dynamical systems. Our approach hinges on the observation that much of the existing linear theory may be readily extended to nonlinear systems - with a reasonable expectation of success - once the nonlinear system has been mapped into a high or infinite dimensional feature space. In particular, we develop computable, non-parametric estimators approximating controllability and observability energy functions for nonlinear systems, and study the ellipsoids they induce. In all cases the relevant quantities are estimated from simulated or observed data. It is then shown that the controllability energy estimator provides a key means for approximating the invariant measure of an ergodic, stochastically forced nonlinear system.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.