Emergent Mind

Greedy Sparsity-Constrained Optimization

(1203.5483)
Published Mar 25, 2012 in stat.ML , math.NA , math.OC , and stat.CO

Abstract

Sparsity-constrained optimization has wide applicability in machine learning, statistics, and signal processing problems such as feature selection and compressive Sensing. A vast body of work has studied the sparsity-constrained optimization from theoretical, algorithmic, and application aspects in the context of sparse estimation in linear models where the fidelity of the estimate is measured by the squared error. In contrast, relatively less effort has been made in the study of sparsity-constrained optimization in cases where nonlinear models are involved or the cost function is not quadratic. In this paper we propose a greedy algorithm, Gradient Support Pursuit (GraSP), to approximate sparse minima of cost functions of arbitrary form. Should a cost function have a Stable Restricted Hessian (SRH) or a Stable Restricted Linearization (SRL), both of which are introduced in this paper, our algorithm is guaranteed to produce a sparse vector within a bounded distance from the true sparse optimum. Our approach generalizes known results for quadratic cost functions that arise in sparse linear regression and Compressive Sensing. We also evaluate the performance of GraSP through numerical simulations on synthetic data, where the algorithm is employed for sparse logistic regression with and without $\ell_2$-regularization.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.