Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Incremental Collaborative Filtering Considering Temporal Effects (1203.5415v1)

Published 24 Mar 2012 in cs.IR

Abstract: Recommender systems require their recommendation algorithms to be accurate, scalable and should handle very sparse training data which keep changing over time. Inspired by ant colony optimization, we propose a novel collaborative filtering scheme: Ant Collaborative Filtering that enjoys those favorable characteristics above mentioned. With the mechanism of pheromone transmission between users and items, our method can pinpoint most relative users and items even in face of the sparsity problem. By virtue of the evaporation of existing pheromone, we capture the evolution of user preference over time. Meanwhile, the computation complexity is comparatively small and the incremental update can be done online. We design three experiments on three typical recommender systems, namely movie recommendation, book recommendation and music recommendation, which cover both explicit and implicit rating data. The results show that the proposed algorithm is well suited for real-world recommendation scenarios which have a high throughput and are time sensitive.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.