Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

ASR Context-Sensitive Error Correction Based on Microsoft N-Gram Dataset (1203.5262v1)

Published 23 Mar 2012 in cs.CL

Abstract: At the present time, computers are employed to solve complex tasks and problems ranging from simple calculations to intensive digital image processing and intricate algorithmic optimization problems to computationally-demanding weather forecasting problems. ASR short for Automatic Speech Recognition is yet another type of computational problem whose purpose is to recognize human spoken speech and convert it into text that can be processed by a computer. Despite that ASR has many versatile and pervasive real-world applications,it is still relatively erroneous and not perfectly solved as it is prone to produce spelling errors in the recognized text, especially if the ASR system is operating in a noisy environment, its vocabulary size is limited, and its input speech is of bad or low quality. This paper proposes a post-editing ASR error correction method based on MicrosoftN-Gram dataset for detecting and correcting spelling errors generated by ASR systems. The proposed method comprises an error detection algorithm for detecting word errors; a candidate corrections generation algorithm for generating correction suggestions for the detected word errors; and a context-sensitive error correction algorithm for selecting the best candidate for correction. The virtue of using the Microsoft N-Gram dataset is that it contains real-world data and word sequences extracted from the web which canmimica comprehensive dictionary of words having a large and all-inclusive vocabulary. Experiments conducted on numerous speeches, performed by different speakers, showed a remarkable reduction in ASR errors. Future research can improve upon the proposed algorithm so much so that it can be parallelized to take advantage of multiprocessor and distributed systems.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.