Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sublinear Time, Approximate Model-based Sparse Recovery For All (1203.4746v2)

Published 21 Mar 2012 in cs.IT and math.IT

Abstract: We describe a probabilistic, {\it sublinear} runtime, measurement-optimal system for model-based sparse recovery problems through dimensionality reducing, {\em dense} random matrices. Specifically, we obtain a linear sketch $u\in \RM$ of a vector $\bestsignal\in \RN$ in high-dimensions through a matrix $\Phi \in \R{M\times N}$ $(M<N)$. We assume this vector can be well approximated by $K$ non-zero coefficients (i.e., it is $K$-sparse). In addition, the nonzero coefficients of $\bestsignal$ can obey additional structure constraints such as matroid, totally unimodular, or knapsack constraints, which dub as model-based sparsity. We construct the dense measurement matrix using a probabilistic method so that it satisfies the so-called restricted isometry property in the $\ell_2$-norm. While recovery using such matrices is measurement-optimal as they require the smallest sketch sizes $\numsam= O(\sparsity \log(\dimension/\sparsity))$, the existing algorithms require superlinear runtime $\Omega(N\log(N/K))$ with the exception of Porat and Strauss, which requires $O(\beta5\epsilon{-3}K(N/K){1/\beta}), ~\beta \in \mathbb{Z}{+}, $ but provides an $\ell_1/\ell_1$ approximation guarantee. In contrast, our approach features $ O\big(\max \lbrace \sketch \sparsity \log{O(1)} \dimension, ~\sketch \sparsity2 \log2 (\dimension/\sparsity) \rbrace\big) $ complexity where $ L \in \mathbb{Z}{+}$ is a design parameter, independent of $\dimension$, requires a smaller sketch size, can accommodate model sparsity, and provides a stronger $\ell_2/\ell_1$ guarantee. Our system applies to "for all" sparse signals, is robust against bounded perturbations in $u$ as well as perturbations on $\bestsignal$ itself.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.