Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

High Speed Compressed Sensing Reconstruction in Dynamic Parallel MRI Using Augmented Lagrangian and Parallel Processing (1203.4587v1)

Published 20 Mar 2012 in cs.IT, cs.DS, and math.IT

Abstract: Magnetic Resonance Imaging (MRI) is one of the fields that the compressed sensing theory is well utilized to reduce the scan time significantly leading to faster imaging or higher resolution images. It has been shown that a small fraction of the overall measurements are sufficient to reconstruct images with the combination of compressed sensing and parallel imaging. Various reconstruction algorithms has been proposed for compressed sensing, among which Augmented Lagrangian based methods have been shown to often perform better than others for many different applications. In this paper, we propose new Augmented Lagrangian based solutions to the compressed sensing reconstruction problem with analysis and synthesis prior formulations. We also propose a computational method which makes use of properties of the sampling pattern to significantly improve the speed of the reconstruction for the proposed algorithms in Cartesian sampled MRI. The proposed algorithms are shown to outperform earlier methods especially for the case of dynamic MRI for which the transfer function tends to be a very large matrix and significantly ill conditioned. It is also demonstrated that the proposed algorithm can be accelerated much further than other methods in case of a parallel implementation with graphics processing units (GPUs).

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.