Papers
Topics
Authors
Recent
2000 character limit reached

Handwritten digit Recognition using Support Vector Machine

Published 17 Mar 2012 in cs.NE | (1203.3847v1)

Abstract: Handwritten Numeral recognition plays a vital role in postal automation services especially in countries like India where multiple languages and scripts are used Discrete Hidden Markov Model (HMM) and hybrid of Neural Network (NN) and HMM are popular methods in handwritten word recognition system. The hybrid system gives better recognition result due to better discrimination capability of the NN. A major problem in handwriting recognition is the huge variability and distortions of patterns. Elastic models based on local observations and dynamic programming such HMM are not efficient to absorb this variability. But their vision is local. But they cannot face to length variability and they are very sensitive to distortions. Then the SVM is used to estimate global correlations and classify the pattern. Support Vector Machine (SVM) is an alternative to NN. In Handwritten recognition, SVM gives a better recognition result. The aim of this paper is to develop an approach which improve the efficiency of handwritten recognition using artificial neural network

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.