Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Handwritten digit Recognition using Support Vector Machine (1203.3847v1)

Published 17 Mar 2012 in cs.NE

Abstract: Handwritten Numeral recognition plays a vital role in postal automation services especially in countries like India where multiple languages and scripts are used Discrete Hidden Markov Model (HMM) and hybrid of Neural Network (NN) and HMM are popular methods in handwritten word recognition system. The hybrid system gives better recognition result due to better discrimination capability of the NN. A major problem in handwriting recognition is the huge variability and distortions of patterns. Elastic models based on local observations and dynamic programming such HMM are not efficient to absorb this variability. But their vision is local. But they cannot face to length variability and they are very sensitive to distortions. Then the SVM is used to estimate global correlations and classify the pattern. Support Vector Machine (SVM) is an alternative to NN. In Handwritten recognition, SVM gives a better recognition result. The aim of this paper is to develop an approach which improve the efficiency of handwritten recognition using artificial neural network

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)