Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Sensitive Attribute based Clustering Method for kanonymization (1203.3622v1)

Published 16 Mar 2012 in cs.CR

Abstract: In medical organizations large amount of personal data are collected and analyzed by the data miner or researcher, for further perusal. However, the data collected may contain sensitive information such as specific disease of a patient and should be kept confidential. Hence, the analysis of such data must ensure due checks that ensure protection against threats to the individual privacy. In this context, greater emphasis has now been given to the privacy preservation algorithms in data mining research. One of the approaches is anonymization approach that is able to protect private information; however, valuable information can be lost. Therefore, the main challenge is how to minimize the information loss during an anonymization process. The proposed method is grouping similar data together based on sensitive attribute and then anonymizes them. Our experimental results show the proposed method offers better outcomes with respect to information loss and execution time.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.