Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning networks determined by the ratio of prior and data (1203.3521v1)

Published 15 Mar 2012 in cs.LG and stat.ML

Abstract: Recent reports have described that the equivalent sample size (ESS) in a Dirichlet prior plays an important role in learning Bayesian networks. This paper provides an asymptotic analysis of the marginal likelihood score for a Bayesian network. Results show that the ratio of the ESS and sample size determine the penalty of adding arcs in learning Bayesian networks. The number of arcs increases monotonically as the ESS increases; the number of arcs monotonically decreases as the ESS decreases. Furthermore, the marginal likelihood score provides a unified expression of various score metrics by changing prior knowledge.

Citations (42)

Summary

We haven't generated a summary for this paper yet.