Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Learning networks determined by the ratio of prior and data (1203.3521v1)

Published 15 Mar 2012 in cs.LG and stat.ML

Abstract: Recent reports have described that the equivalent sample size (ESS) in a Dirichlet prior plays an important role in learning Bayesian networks. This paper provides an asymptotic analysis of the marginal likelihood score for a Bayesian network. Results show that the ratio of the ESS and sample size determine the penalty of adding arcs in learning Bayesian networks. The number of arcs increases monotonically as the ESS increases; the number of arcs monotonically decreases as the ESS decreases. Furthermore, the marginal likelihood score provides a unified expression of various score metrics by changing prior knowledge.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.