Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Between Arrow and Gibbard-Satterthwaite; A representation theoretic approach (1203.3368v1)

Published 14 Mar 2012 in math.CO, cs.CC, cs.DM, cs.GT, and math.RT

Abstract: A central theme in social choice theory is that of impossibility theorems, such as Arrow's theorem and the Gibbard-Satterthwaite theorem, which state that under certain natural constraints, social choice mechanisms are impossible to construct. In recent years, beginning in Kalai`01, much work has been done in finding \textit{robust} versions of these theorems, showing "approximate" impossibility remains even when most, but not all, of the constraints are satisfied. We study a spectrum of settings between the case where society chooses a single outcome (\'a-la-Gibbard-Satterthwaite) and the choice of a complete order (as in Arrow's theorem). We use algebraic techniques, specifically representation theory of the symmetric group, and also prove robust versions of the theorems that we state. Our relaxations of the constraints involve relaxing of a version of "independence of irrelevant alternatives", rather than relaxing the demand of a transitive outcome, as is done in most other robustness results.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.