Papers
Topics
Authors
Recent
2000 character limit reached

Between Arrow and Gibbard-Satterthwaite; A representation theoretic approach (1203.3368v1)

Published 14 Mar 2012 in math.CO, cs.CC, cs.DM, cs.GT, and math.RT

Abstract: A central theme in social choice theory is that of impossibility theorems, such as Arrow's theorem and the Gibbard-Satterthwaite theorem, which state that under certain natural constraints, social choice mechanisms are impossible to construct. In recent years, beginning in Kalai`01, much work has been done in finding \textit{robust} versions of these theorems, showing "approximate" impossibility remains even when most, but not all, of the constraints are satisfied. We study a spectrum of settings between the case where society chooses a single outcome (\'a-la-Gibbard-Satterthwaite) and the choice of a complete order (as in Arrow's theorem). We use algebraic techniques, specifically representation theory of the symmetric group, and also prove robust versions of the theorems that we state. Our relaxations of the constraints involve relaxing of a version of "independence of irrelevant alternatives", rather than relaxing the demand of a transitive outcome, as is done in most other robustness results.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.