Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Statistical Characterization and Mitigation of NLOS Errors in UWB Localization Systems (1203.2835v1)

Published 13 Mar 2012 in cs.IT, math.IT, and stat.AP

Abstract: In this paper some new experimental results about the statistical characterization of the non-line-of-sight (NLOS) bias affecting time-of-arrival (TOA) estimation in ultrawideband (UWB) wireless localization systems are illustrated. Then, these results are exploited to assess the performance of various maximum-likelihood (ML) based algorithms for joint TOA localization and NLOS bias mitigation. Our numerical results evidence that the accuracy of all the considered algorithms is appreciably influenced by the LOS/NLOS conditions of the propagation environment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube