Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Exact Algorithms for Permutation CSP (1203.2801v1)

Published 13 Mar 2012 in cs.CC and cs.DS

Abstract: In the Permutation Constraint Satisfaction Problem (Permutation CSP) we are given a set of variables $V$ and a set of constraints C, in which constraints are tuples of elements of V. The goal is to find a total ordering of the variables, $\pi\ : V \rightarrow [1,...,|V|]$, which satisfies as many constraints as possible. A constraint $(v_1,v_2,...,v_k)$ is satisfied by an ordering $\pi$ when $\pi(v_1)<\pi(v_2)<...<\pi(v_k)$. An instance has arity $k$ if all the constraints involve at most $k$ elements. This problem expresses a variety of permutation problems including {\sc Feedback Arc Set} and {\sc Betweenness} problems. A naive algorithm, listing all the $n!$ permutations, requires $2{O(n\log{n})}$ time. Interestingly, {\sc Permutation CSP} for arity 2 or 3 can be solved by Held-Karp type algorithms in time $O*(2n)$, but no algorithm is known for arity at least 4 with running time significantly better than $2{O(n\log{n})}$. In this paper we resolve the gap by showing that {\sc Arity 4 Permutation CSP} cannot be solved in time $2{o(n\log{n})}$ unless ETH fails.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.