Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spanning trees and the complexity of flood-filling games (1203.2538v3)

Published 12 Mar 2012 in cs.DS

Abstract: We consider problems related to the combinatorial game (Free-)Flood-It, in which players aim to make a coloured graph monochromatic with the minimum possible number of flooding operations. We show that the minimum number of moves required to flood any given graph G is equal to the minimum, taken over all spanning trees T of G, of the number of moves required to flood T. This result is then applied to give two polynomial-time algorithms for flood-filling problems. Firstly, we can compute in polynomial time the minimum number of moves required to flood a graph with only a polynomial number of connected subgraphs. Secondly, given any coloured connected graph and a subset of the vertices of bounded size, the number of moves required to connect this subset can be computed in polynomial time.

Citations (14)

Summary

We haven't generated a summary for this paper yet.