Papers
Topics
Authors
Recent
2000 character limit reached

Spanning trees and the complexity of flood-filling games

Published 12 Mar 2012 in cs.DS | (1203.2538v3)

Abstract: We consider problems related to the combinatorial game (Free-)Flood-It, in which players aim to make a coloured graph monochromatic with the minimum possible number of flooding operations. We show that the minimum number of moves required to flood any given graph G is equal to the minimum, taken over all spanning trees T of G, of the number of moves required to flood T. This result is then applied to give two polynomial-time algorithms for flood-filling problems. Firstly, we can compute in polynomial time the minimum number of moves required to flood a graph with only a polynomial number of connected subgraphs. Secondly, given any coloured connected graph and a subset of the vertices of bounded size, the number of moves required to connect this subset can be computed in polynomial time.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.