Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Overview of streaming-data algorithms (1203.2000v1)

Published 9 Mar 2012 in cs.DB and cs.IR

Abstract: Due to recent advances in data collection techniques, massive amounts of data are being collected at an extremely fast pace. Also, these data are potentially unbounded. Boundless streams of data collected from sensors, equipments, and other data sources are referred to as data streams. Various data mining tasks can be performed on data streams in search of interesting patterns. This paper studies a particular data mining task, clustering, which can be used as the first step in many knowledge discovery processes. By grouping data streams into homogeneous clusters, data miners can learn about data characteristics which can then be developed into classification models for new data or predictive models for unknown events. Recent research addresses the problem of data-stream mining to deal with applications that require processing huge amounts of data such as sensor data analysis and financial applications. For such analysis, single-pass algorithms that consume a small amount of memory are critical.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.