Topological Birkhoff (1203.1876v2)
Abstract: One of the most fundamental mathematical contributions of Garrett Birkhoff is the HSP theorem, which implies that a finite algebra B satisfies all equations that hold in a finite algebra A of the same signature if and only if B is a homomorphic image of a subalgebra of a finite power of A. On the other hand, if A is infinite, then in general one needs to take an infinite power in order to obtain a representation of B in terms of A, even if B is finite. We show that by considering the natural topology on the functions of A and B in addition to the equations that hold between them, one can do with finite powers even for many interesting infinite algebras A. More precisely, we prove that if A and B are at most countable algebras which are oligomorphic, then the mapping which sends each function from A to the corresponding function in B preserves equations and is continuous if and only if B is a homomorphic image of a subalgebra of a finite power of A. Our result has the following consequences in model theory and in theoretical computer science: two \omega-categorical structures are primitive positive bi-interpretable if and only if their topological polymorphism clones are isomorphic. In particular, the complexity of the constraint satisfaction problem of an \omega-categorical structure only depends on its topological polymorphism clone.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.