Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Level Feature Descriptor for Robust Texture Classification via Locality-Constrained Collaborative Strategy (1203.0488v1)

Published 2 Mar 2012 in cs.CV and cs.IR

Abstract: This paper introduces a simple but highly efficient ensemble for robust texture classification, which can effectively deal with translation, scale and changes of significant viewpoint problems. The proposed method first inherits the spirit of spatial pyramid matching model (SPM), which is popular for encoding spatial distribution of local features, but in a flexible way, partitioning the original image into different levels and incorporating different overlapping patterns of each level. This flexible setup helps capture the informative features and produces sufficient local feature codes by some well-chosen aggregation statistics or pooling operations within each partitioned region, even when only a few sample images are available for training. Then each texture image is represented by several orderless feature codes and thereby all the training data form a reliable feature pond. Finally, to take full advantage of this feature pond, we develop a collaborative representation-based strategy with locality constraint (LC-CRC) for the final classification, and experimental results on three well-known public texture datasets demonstrate the proposed approach is very competitive and even outperforms several state-of-the-art methods. Particularly, when only a few samples of each category are available for training, our approach still achieves very high classification performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shu Kong (50 papers)
  2. Donghui Wang (15 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.