Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Acyclic edge coloring of sparse graphs (1202.6129v1)

Published 28 Feb 2012 in math.CO and cs.DM

Abstract: A proper edge coloring of a graph $G$ is called acyclic if there is no bichromatic cycle in $G$. The acyclic chromatic index of $G$, denoted by $\chi'_a(G)$, is the least number of colors $k$ such that $G$ has an acyclic edge $k$-coloring. The maximum average degree of a graph $G$, denoted by $\mad(G)$, is the maximum of the average degree of all subgraphs of $G$. In this paper, it is proved that if $\mad(G)<4$, then $\chi'_a(G)\leq{\Delta(G)+2}$; if $\mad(G)<3$, then $\chi'_a(G)\leq{\Delta(G)+1}$. This implies that every triangle-free planar graph $G$ is acyclically edge $(\Delta(G)+2)$-colorable.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube