Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Combinatorial limitations of average-radius list-decoding (1202.6086v2)

Published 27 Feb 2012 in cs.IT, cs.CC, math.CO, and math.IT

Abstract: We study certain combinatorial aspects of list-decoding, motivated by the exponential gap between the known upper bound (of $O(1/\gamma)$) and lower bound (of $\Omega_p(\log (1/\gamma))$) for the list-size needed to decode up to radius $p$ with rate $\gamma$ away from capacity, i.e., $1-\h(p)-\gamma$ (here $p\in (0,1/2)$ and $\gamma > 0$). Our main result is the following: We prove that in any binary code $C \subseteq {0,1}n$ of rate $1-\h(p)-\gamma$, there must exist a set $\mathcal{L} \subset C$ of $\Omega_p(1/\sqrt{\gamma})$ codewords such that the average distance of the points in $\mathcal{L}$ from their centroid is at most $pn$. In other words, there must exist $\Omega_p(1/\sqrt{\gamma})$ codewords with low "average radius." The standard notion of list-decoding corresponds to working with the maximum distance of a collection of codewords from a center instead of average distance. The average-radius form is in itself quite natural and is implied by the classical Johnson bound. The remaining results concern the standard notion of list-decoding, and help clarify the combinatorial landscape of list-decoding: 1. We give a short simple proof, over all fixed alphabets, of the above-mentioned $\Omega_p(\log (\gamma))$ lower bound. Earlier, this bound followed from a complicated, more general result of Blinovsky. 2. We show that one {\em cannot} improve the $\Omega_p(\log (1/\gamma))$ lower bound via techniques based on identifying the zero-rate regime for list decoding of constant-weight codes. 3. We show a "reverse connection" showing that constant-weight codes for list decoding imply general codes for list decoding with higher rate. 4. We give simple second moment based proofs of tight (up to constant factors) lower bounds on the list-size needed for list decoding random codes and random linear codes from errors as well as erasures.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.