Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Induced Disjoint Paths in Claw-Free Graphs (1202.4419v2)

Published 20 Feb 2012 in cs.DM and cs.DS

Abstract: Paths P1,...,Pk in a graph G=(V,E) are said to be mutually induced if for any 1 <= i < j <= k, Pi and Pj have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to test whether a graph G with k pairs of specified vertices (si,ti) contains k mutually induced paths Pi such that Pi connects si and ti for i=1,...,k. We show that this problem is fixed-parameter tractable for claw-free graphs when parameterized by k. Several related problems, such as the k-in-a-Path problem, are proven to be fixed-parameter tractable for claw-free graphs as well. We show that an improvement of these results in certain directions is unlikely, for example by noting that the Induced Disjoint Paths problem cannot have a polynomial kernel for line graphs (a type of claw-free graphs), unless NP \subseteq coNP/poly. Moreover, the problem becomes NP-complete, even when k=2, for the more general class of K_1,4-free graphs. Finally, we show that the nO(k)-time algorithm of Fiala et al. for testing whether a claw-free graph contains some k-vertex graph H as a topological induced minor is essentially optimal by proving that this problem is W[1]-hard even if G and H are line graphs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.