Space-Constrained Interval Selection (1202.4326v2)
Abstract: We study streaming algorithms for the interval selection problem: finding a maximum cardinality subset of disjoint intervals on the line. A deterministic 2-approximation streaming algorithm for this problem is developed, together with an algorithm for the special case of proper intervals, achieving improved approximation ratio of 3/2. We complement these upper bounds by proving that they are essentially best possible in the streaming setting: it is shown that an approximation ratio of $2 - \epsilon$ (or $3 / 2 - \epsilon$ for proper intervals) cannot be achieved unless the space is linear in the input size. In passing, we also answer an open question of Adler and Azar \cite{AdlerAzar03} regarding the space complexity of constant-competitive randomized preemptive online algorithms for the same problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.