Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Sparse matrix-variate Gaussian process blockmodels for network modeling (1202.3769v1)

Published 14 Feb 2012 in cs.LG and stat.ML

Abstract: We face network data from various sources, such as protein interactions and online social networks. A critical problem is to model network interactions and identify latent groups of network nodes. This problem is challenging due to many reasons. For example, the network nodes are interdependent instead of independent of each other, and the data are known to be very noisy (e.g., missing edges). To address these challenges, we propose a new relational model for network data, Sparse Matrix-variate Gaussian process Blockmodel (SMGB). Our model generalizes popular bilinear generative models and captures nonlinear network interactions using a matrix-variate Gaussian process with latent membership variables. We also assign sparse prior distributions on the latent membership variables to learn sparse group assignments for individual network nodes. To estimate the latent variables efficiently from data, we develop an efficient variational expectation maximization method. We compared our approaches with several state-of-the-art network models on both synthetic and real-world network datasets. Experimental results demonstrate SMGBs outperform the alternative approaches in terms of discovering latent classes or predicting unknown interactions.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (4)