Papers
Topics
Authors
Recent
2000 character limit reached

New Probabilistic Bounds on Eigenvalues and Eigenvectors of Random Kernel Matrices (1202.3761v1)

Published 14 Feb 2012 in cs.LG and stat.ML

Abstract: Kernel methods are successful approaches for different machine learning problems. This success is mainly rooted in using feature maps and kernel matrices. Some methods rely on the eigenvalues/eigenvectors of the kernel matrix, while for other methods the spectral information can be used to estimate the excess risk. An important question remains on how close the sample eigenvalues/eigenvectors are to the population values. In this paper, we improve earlier results on concentration bounds for eigenvalues of general kernel matrices. For distance and inner product kernel functions, e.g. radial basis functions, we provide new concentration bounds, which are characterized by the eigenvalues of the sample covariance matrix. Meanwhile, the obstacles for sharper bounds are accounted for and partially addressed. As a case study, we derive a concentration inequality for sample kernel target-alignment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.