Variational Algorithms for Marginal MAP (1202.3742v1)
Abstract: Marginal MAP problems are notoriously difficult tasks for graphical models. We derive a general variational framework for solving marginal MAP problems, in which we apply analogues of the Bethe, tree-reweighted, and mean field approximations. We then derive a "mixed" message passing algorithm and a convergent alternative using CCCP to solve the BP-type approximations. Theoretically, we give conditions under which the decoded solution is a global or local optimum, and obtain novel upper bounds on solutions. Experimentally we demonstrate that our algorithms outperform related approaches. We also show that EM and variational EM comprise a special case of our framework.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.