Papers
Topics
Authors
Recent
2000 character limit reached

Detecting low-complexity unobserved causes (1202.3737v1)

Published 14 Feb 2012 in cs.LG and stat.ML

Abstract: We describe a method that infers whether statistical dependences between two observed variables X and Y are due to a "direct" causal link or only due to a connecting causal path that contains an unobserved variable of low complexity, e.g., a binary variable. This problem is motivated by statistical genetics. Given a genetic marker that is correlated with a phenotype of interest, we want to detect whether this marker is causal or it only correlates with a causal one. Our method is based on the analysis of the location of the conditional distributions P(Y|x) in the simplex of all distributions of Y. We report encouraging results on semi-empirical data.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.