Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Unifying Framework for Linearly Solvable Control (1202.3715v1)

Published 14 Feb 2012 in cs.SY and math.OC

Abstract: Recent work has led to the development of an elegant theory of Linearly Solvable Markov Decision Processes (LMDPs) and related Path-Integral Control Problems. Traditionally, MDPs have been formulated using stochastic policies and a control cost based on the KL divergence. In this paper, we extend this framework to a more general class of divergences: the Renyi divergences. These are a more general class of divergences parameterized by a continuous parameter that include the KL divergence as a special case. The resulting control problems can be interpreted as solving a risk-sensitive version of the LMDP problem. For a > 0, we get risk-averse behavior (the degree of risk-aversion increases with a) and for a < 0, we get risk-seeking behavior. We recover LMDPs in the limit as a -> 0. This work generalizes the recently developed risk-sensitive path-integral control formalism which can be seen as the continuous-time limit of results obtained in this paper. To the best of our knowledge, this is a general theory of linearly solvable control and includes all previous work as a special case. We also present an alternative interpretation of these results as solving a 2-player (cooperative or competitive) Markov Game. From the linearity follow a number of nice properties including compositionality of control laws and a path-integral representation of the value function. We demonstrate the usefulness of the framework on control problems with noise where different values of lead to qualitatively different control behaviors.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube