Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Strong Scaling of Matrix Multiplication Algorithms and Memory-Independent Communication Lower Bounds (1202.3177v1)

Published 14 Feb 2012 in cs.DS, cs.CC, cs.DC, cs.NA, math.CO, and math.NA

Abstract: A parallel algorithm has perfect strong scaling if its running time on P processors is linear in 1/P, including all communication costs. Distributed-memory parallel algorithms for matrix multiplication with perfect strong scaling have only recently been found. One is based on classical matrix multiplication (Solomonik and Demmel, 2011), and one is based on Strassen's fast matrix multiplication (Ballard, Demmel, Holtz, Lipshitz, and Schwartz, 2012). Both algorithms scale perfectly, but only up to some number of processors where the inter-processor communication no longer scales. We obtain a memory-independent communication cost lower bound on classical and Strassen-based distributed-memory matrix multiplication algorithms. These bounds imply that no classical or Strassen-based parallel matrix multiplication algorithm can strongly scale perfectly beyond the ranges already attained by the two parallel algorithms mentioned above. The memory-independent bounds and the strong scaling bounds generalize to other algorithms.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.