Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards minimax policies for online linear optimization with bandit feedback (1202.3079v1)

Published 14 Feb 2012 in cs.LG and stat.ML

Abstract: We address the online linear optimization problem with bandit feedback. Our contribution is twofold. First, we provide an algorithm (based on exponential weights) with a regret of order $\sqrt{d n \log N}$ for any finite action set with $N$ actions, under the assumption that the instantaneous loss is bounded by 1. This shaves off an extraneous $\sqrt{d}$ factor compared to previous works, and gives a regret bound of order $d \sqrt{n \log n}$ for any compact set of actions. Without further assumptions on the action set, this last bound is minimax optimal up to a logarithmic factor. Interestingly, our result also shows that the minimax regret for bandit linear optimization with expert advice in $d$ dimension is the same as for the basic $d$-armed bandit with expert advice. Our second contribution is to show how to use the Mirror Descent algorithm to obtain computationally efficient strategies with minimax optimal regret bounds in specific examples. More precisely we study two canonical action sets: the hypercube and the Euclidean ball. In the former case, we obtain the first computationally efficient algorithm with a $d \sqrt{n}$ regret, thus improving by a factor $\sqrt{d \log n}$ over the best known result for a computationally efficient algorithm. In the latter case, our approach gives the first algorithm with a $\sqrt{d n \log n}$ regret, again shaving off an extraneous $\sqrt{d}$ compared to previous works.

Citations (145)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube