Emergent Mind

Revolutionaries and spies: Spy-good and spy-bad graphs

(1202.2910)
Published Feb 14, 2012 in cs.DM and math.CO

Abstract

We study a game on a graph $G$ played by $r$ {\it revolutionaries} and $s$ {\it spies}. Initially, revolutionaries and then spies occupy vertices. In each subsequent round, each revolutionary may move to a neighboring vertex or not move, and then each spy has the same option. The revolutionaries win if $m$ of them meet at some vertex having no spy (at the end of a round); the spies win if they can avoid this forever. Let $\sigma(G,m,r)$ denote the minimum number of spies needed to win. To avoid degenerate cases, assume $|V(G)|\ge r-m+1\ge\floor{r/m}\ge 1$. The easy bounds are then $\floor{r/m}\le \sigma(G,m,r)\le r-m+1$. We prove that the lower bound is sharp when $G$ has a rooted spanning tree $T$ such that every edge of $G$ not in $T$ joins two vertices having the same parent in $T$. As a consequence, $\sigma(G,m,r)\le\gamma(G)\floor{r/m}$, where $\gamma(G)$ is the domination number; this bound is nearly sharp when $\gamma(G)\le m$. For the random graph with constant edge-probability $p$, we obtain constants $c$ and $c'$ (depending on $m$ and $p$) such that $\sigma(G,m,r)$ is near the trivial upper bound when $r<c\ln n$ and at most $c'$ times the trivial lower bound when $r>c'\ln n$. For the hypercube $Q_d$ with $d\ge r$, we have $\sigma(G,m,r)=r-m+1$ when $m=2$, and for $m\ge 3$ at least $r-39m$ spies are needed. For complete $k$-partite graphs with partite sets of size at least $2r$, the leading term in $\sigma(G,m,r)$ is approximately $\frac{k}{k-1}\frac{r}{m}$ when $k\ge m$. For $k=2$, we have $\sigma(G,2,r)=\bigl\lceil{\frac{\floor{7r/2}-3}5}\bigr\rceil$ and $\sigma(G,3,r)=\floor{r/2}$, and in general $\frac{3r}{2m}-3\le \sigma(G,m,r)\le\frac{(1+1/\sqrt3)r}{m}$.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.