Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scaling Laws in Human Language (1202.2903v1)

Published 14 Feb 2012 in physics.data-an, cs.IR, and physics.soc-ph

Abstract: Zipf's law on word frequency is observed in English, French, Spanish, Italian, and so on, yet it does not hold for Chinese, Japanese or Korean characters. A model for writing process is proposed to explain the above difference, which takes into account the effects of finite vocabulary size. Experiments, simulations and analytical solution agree well with each other. The results show that the frequency distribution follows a power law with exponent being equal to 1, at which the corresponding Zipf's exponent diverges. Actually, the distribution obeys exponential form in the Zipf's plot. Deviating from the Heaps' law, the number of distinct words grows with the text length in three stages: It grows linearly in the beginning, then turns to a logarithmical form, and eventually saturates. This work refines previous understanding about Zipf's law and Heaps' law in language systems.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.