Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Computational Complexity of Truthfulness in Combinatorial Auctions (1202.2789v1)

Published 13 Feb 2012 in cs.GT

Abstract: One of the fundamental questions of Algorithmic Mechanism Design is whether there exists an inherent clash between truthfulness and computational tractability: in particular, whether polynomial-time truthful mechanisms for combinatorial auctions are provably weaker in terms of approximation ratio than non-truthful ones. This question was very recently answered for universally truthful mechanisms for combinatorial auctions \cite{D11}, and even for truthful-in-expectation mechanisms \cite{DughmiV11}. However, both of these results are based on information-theoretic arguments for valuations given by a value oracle, and leave open the possibility of polynomial-time truthful mechanisms for succinctly described classes of valuations. This paper is the first to prove {\em computational hardness} results for truthful mechanisms for combinatorial auctions with succinctly described valuations. We prove that there is a class of succinctly represented submodular valuations for which no deterministic truthful mechanism provides an $m{1/2-\epsilon}$-approximation for a constant $\epsilon>0$, unless $NP=RP$ ($m$ denotes the number of items). Furthermore, we prove that even truthful-in-expectation mechanisms cannot approximate combinatorial auctions with certain succinctly described submodular valuations better than within $n\gamma$, where $n$ is the number of bidders and $\gamma>0$ some absolute constant, unless $NP \subseteq P/poly$. In addition, we prove computational hardness results for two related problems.

Citations (58)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.