Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The Computational Complexity of Truthfulness in Combinatorial Auctions (1202.2789v1)

Published 13 Feb 2012 in cs.GT

Abstract: One of the fundamental questions of Algorithmic Mechanism Design is whether there exists an inherent clash between truthfulness and computational tractability: in particular, whether polynomial-time truthful mechanisms for combinatorial auctions are provably weaker in terms of approximation ratio than non-truthful ones. This question was very recently answered for universally truthful mechanisms for combinatorial auctions \cite{D11}, and even for truthful-in-expectation mechanisms \cite{DughmiV11}. However, both of these results are based on information-theoretic arguments for valuations given by a value oracle, and leave open the possibility of polynomial-time truthful mechanisms for succinctly described classes of valuations. This paper is the first to prove {\em computational hardness} results for truthful mechanisms for combinatorial auctions with succinctly described valuations. We prove that there is a class of succinctly represented submodular valuations for which no deterministic truthful mechanism provides an $m{1/2-\epsilon}$-approximation for a constant $\epsilon>0$, unless $NP=RP$ ($m$ denotes the number of items). Furthermore, we prove that even truthful-in-expectation mechanisms cannot approximate combinatorial auctions with certain succinctly described submodular valuations better than within $n\gamma$, where $n$ is the number of bidders and $\gamma>0$ some absolute constant, unless $NP \subseteq P/poly$. In addition, we prove computational hardness results for two related problems.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube