Papers
Topics
Authors
Recent
2000 character limit reached

Subsampling at Information Theoretically Optimal Rates (1202.2525v2)

Published 12 Feb 2012 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: We study the problem of sampling a random signal with sparse support in frequency domain. Shannon famously considered a scheme that instantaneously samples the signal at equispaced times. He proved that the signal can be reconstructed as long as the sampling rate exceeds twice the bandwidth (Nyquist rate). Cand`es, Romberg, Tao introduced a scheme that acquires instantaneous samples of the signal at random times. They proved that the signal can be uniquely and efficiently reconstructed, provided the sampling rate exceeds the frequency support of the signal, times logarithmic factors. In this paper we consider a probabilistic model for the signal, and a sampling scheme inspired by the idea of spatial coupling in coding theory. Namely, we propose to acquire non-instantaneous samples at random times. Mathematically, this is implemented by acquiring a small random subset of Gabor coefficients. We show empirically that this scheme achieves correct reconstruction as soon as the sampling rate exceeds the frequency support of the signal, thus reaching the information theoretic limit.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.