Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

An evaluation of local shape descriptors for 3D shape retrieval (1202.2368v1)

Published 10 Feb 2012 in cs.CV, cs.CG, cs.DL, cs.IR, and cs.MM

Abstract: As the usage of 3D models increases, so does the importance of developing accurate 3D shape retrieval algorithms. A common approach is to calculate a shape descriptor for each object, which can then be compared to determine two objects' similarity. However, these descriptors are often evaluated independently and on different datasets, making them difficult to compare. Using the SHREC 2011 Shape Retrieval Contest of Non-rigid 3D Watertight Meshes dataset, we systematically evaluate a collection of local shape descriptors. We apply each descriptor to the bag-of-words paradigm and assess the effects of varying the dictionary's size and the number of sample points. In addition, several salient point detection methods are used to choose sample points; these methods are compared to each other and to random selection. Finally, information from two local descriptors is combined in two ways and changes in performance are investigated. This paper presents results of these experiment

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube