Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Polynomial Time Approximation Scheme for a Single Machine Scheduling Problem Using a Hybrid Evolutionary Algorithm (1202.1708v2)

Published 8 Feb 2012 in cs.NE

Abstract: Nowadays hybrid evolutionary algorithms, i.e, heuristic search algorithms combining several mutation operators some of which are meant to implement stochastically a well known technique designed for the specific problem in question while some others playing the role of random search, have become rather popular for tackling various NP-hard optimization problems. While empirical studies demonstrate that hybrid evolutionary algorithms are frequently successful at finding solutions having fitness sufficiently close to the optimal, many fewer articles address the computational complexity in a mathematically rigorous fashion. This paper is devoted to a mathematically motivated design and analysis of a parameterized family of evolutionary algorithms which provides a polynomial time approximation scheme for one of the well-known NP-hard combinatorial optimization problems, namely the "single machine scheduling problem without precedence constraints". The authors hope that the techniques and ideas developed in this article may be applied in many other situations.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)