Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

New lower bound for 2-identifying code in the square grid (1202.0671v2)

Published 3 Feb 2012 in math.CO and cs.DM

Abstract: An $r$-identifying code in a graph $G = (V,E)$ is a subset $C \subseteq V$ such that for each $u \in V$ the intersection of $C$ and the ball of radius $r$ centered at $u$ is nonempty and unique. Previously, $r$-identifying codes have been studied in various grids. In particular, it has been shown that there exists a 2-identifying code in the square grid with density $5/29 \approx 0.172$ and that there are no 2-identifying codes with density smaller than $3/20 = 0.15$. Recently, the lower bound has been improved to $6/37 \approx 0.162$ by Martin and Stanton (2010). In this paper, we further improve the lower bound by showing that there are no 2-identifying codes in the square grid with density smaller than $6/35 \approx 0.171$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)