Papers
Topics
Authors
Recent
2000 character limit reached

Observability, Controllability and Local Reducibility of Linear Codes on Graphs (1202.0534v1)

Published 2 Feb 2012 in cs.IT, cs.SY, and math.IT

Abstract: This paper is concerned with the local reducibility properties of linear realizations of codes on finite graphs. Trimness and properness are dual properties of constraint codes. A linear realization is locally reducible if any constraint code is not both trim and proper. On a finite cycle-free graph, a linear realization is minimal if and only if every constraint code is both trim and proper. A linear realization is called observable if it is one-to-one, and controllable if all constraints are independent. Observability and controllability are dual properties. An unobservable or uncontrollable realization is locally reducible. A parity-check realization is uncontrollable if and only if it has redundant parity checks. A tail-biting trellis realization is uncontrollable if and only if its trajectories partition into disconnected subrealizations. General graphical realizations do not share this property.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.