Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast Computation of Smith Forms of Sparse Matrices Over Local Rings (1201.5365v2)

Published 25 Jan 2012 in cs.SC and math.AC

Abstract: We present algorithms to compute the Smith Normal Form of matrices over two families of local rings. The algorithms use the \emph{black-box} model which is suitable for sparse and structured matrices. The algorithms depend on a number of tools, such as matrix rank computation over finite fields, for which the best-known time- and memory-efficient algorithms are probabilistic. For an $\nxn$ matrix $A$ over the ring $\Fzfe$, where $fe$ is a power of an irreducible polynomial $f \in \Fz$ of degree $d$, our algorithm requires $\bigO(\eta de2n)$ operations in $\F$, where our black-box is assumed to require $\bigO(\eta)$ operations in $\F$ to compute a matrix-vector product by a vector over $\Fzfe$ (and $\eta$ is assumed greater than $\Pden$). The algorithm only requires additional storage for $\bigO(\Pden)$ elements of $\F$. In particular, if $\eta=\softO(\Pden)$, then our algorithm requires only $\softO(n2d2e3)$ operations in $\F$, which is an improvement on known dense methods for small $d$ and $e$. For the ring $\ZZ/pe\ZZ$, where $p$ is a prime, we give an algorithm which is time- and memory-efficient when the number of nontrivial invariant factors is small. We describe a method for dimension reduction while preserving the invariant factors. The time complexity is essentially linear in $\mu n r e \log p,$ where $\mu$ is the number of operations in $\ZZ/p\ZZ$ to evaluate the black-box (assumed greater than $n$) and $r$ is the total number of non-zero invariant factors. To avoid the practical cost of conditioning, we give a Monte Carlo certificate, which at low cost, provides either a high probability of success or a proof of failure. The quest for a time- and memory-efficient solution without restrictions on the number of nontrivial invariant factors remains open. We offer a conjecture which may contribute toward that end.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.