Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A simple D^2-sampling based PTAS for k-means and other Clustering Problems (1201.4206v1)

Published 20 Jan 2012 in cs.DS

Abstract: Given a set of points $P \subset \mathbb{R}d$, the $k$-means clustering problem is to find a set of $k$ {\em centers} $C = {c_1,...,c_k}, c_i \in \mathbb{R}d,$ such that the objective function $\sum_{x \in P} d(x,C)2$, where $d(x,C)$ denotes the distance between $x$ and the closest center in $C$, is minimized. This is one of the most prominent objective functions that have been studied with respect to clustering. $D2$-sampling \cite{ArthurV07} is a simple non-uniform sampling technique for choosing points from a set of points. It works as follows: given a set of points $P \subseteq \mathbb{R}d$, the first point is chosen uniformly at random from $P$. Subsequently, a point from $P$ is chosen as the next sample with probability proportional to the square of the distance of this point to the nearest previously sampled points. $D2$-sampling has been shown to have nice properties with respect to the $k$-means clustering problem. Arthur and Vassilvitskii \cite{ArthurV07} show that $k$ points chosen as centers from $P$ using $D2$-sampling gives an $O(\log{k})$ approximation in expectation. Ailon et. al. \cite{AJMonteleoni09} and Aggarwal et. al. \cite{AggarwalDK09} extended results of \cite{ArthurV07} to show that $O(k)$ points chosen as centers using $D2$-sampling give $O(1)$ approximation to the $k$-means objective function with high probability. In this paper, we further demonstrate the power of $D2$-sampling by giving a simple randomized $(1 + \epsilon)$-approximation algorithm that uses the $D2$-sampling in its core.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.