Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A simple D^2-sampling based PTAS for k-means and other Clustering Problems (1201.4206v1)

Published 20 Jan 2012 in cs.DS

Abstract: Given a set of points $P \subset \mathbb{R}d$, the $k$-means clustering problem is to find a set of $k$ {\em centers} $C = {c_1,...,c_k}, c_i \in \mathbb{R}d,$ such that the objective function $\sum_{x \in P} d(x,C)2$, where $d(x,C)$ denotes the distance between $x$ and the closest center in $C$, is minimized. This is one of the most prominent objective functions that have been studied with respect to clustering. $D2$-sampling \cite{ArthurV07} is a simple non-uniform sampling technique for choosing points from a set of points. It works as follows: given a set of points $P \subseteq \mathbb{R}d$, the first point is chosen uniformly at random from $P$. Subsequently, a point from $P$ is chosen as the next sample with probability proportional to the square of the distance of this point to the nearest previously sampled points. $D2$-sampling has been shown to have nice properties with respect to the $k$-means clustering problem. Arthur and Vassilvitskii \cite{ArthurV07} show that $k$ points chosen as centers from $P$ using $D2$-sampling gives an $O(\log{k})$ approximation in expectation. Ailon et. al. \cite{AJMonteleoni09} and Aggarwal et. al. \cite{AggarwalDK09} extended results of \cite{ArthurV07} to show that $O(k)$ points chosen as centers using $D2$-sampling give $O(1)$ approximation to the $k$-means objective function with high probability. In this paper, we further demonstrate the power of $D2$-sampling by giving a simple randomized $(1 + \epsilon)$-approximation algorithm that uses the $D2$-sampling in its core.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.