Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Near-Optimal Expanding Generating Sets for Solvable Permutation Groups (1201.3181v1)

Published 16 Jan 2012 in cs.CC and cs.DM

Abstract: Let $G =<S>$ be a solvable permutation group of the symmetric group $S_n$ given as input by the generating set $S$. We give a deterministic polynomial-time algorithm that computes an \emph{expanding generating set} of size $\tilde{O}(n2)$ for $G$. More precisely, the algorithm computes a subset $T\subset G$ of size $\tilde{O}(n2)(1/\lambda){O(1)}$ such that the undirected Cayley graph $Cay(G,T)$ is a $\lambda$-spectral expander (the $\tilde{O}$ notation suppresses $\log {O(1)}n$ factors). As a byproduct of our proof, we get a new explicit construction of $\varepsilon$-bias spaces of size $\tilde{O}(n\poly(\log d))(\frac{1}{\varepsilon}){O(1)}$ for the groups $\Z_dn$. The earlier known size bound was $O((d+n/\varepsilon2)){11/2}$ given by \cite{AMN98}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.